

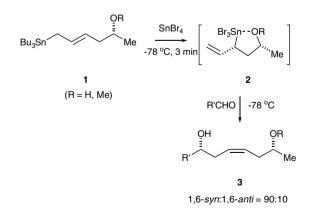
Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 341-343

1,6-Remote stereocontrol using allylgermanes

Eric J. Thomas* and Anna P. Weston


School of Chemistry, University of Manchester, Manchester M13 9PL, UK

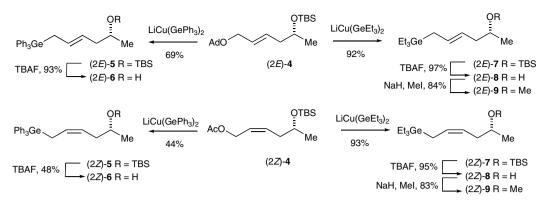
Received 3 November 2006; accepted 10 November 2006

Abstract—Transmetallation of 5-hydroxy- and 5-methoxyhex-2-enyl(triethyl)germanes 8 and 9 with tin(IV) bromide is stereoselective and generates allyltin tribromides, which react with aldehydes to give (3Z)-homoallylic alcohols 3 with useful levels of 1,6-synstereocontrol.

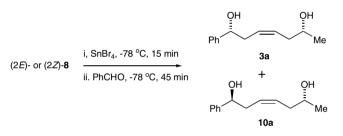
© 2006 Elsevier Ltd. All rights reserved.

In the accompanying paper, it is reported that transmetallation of 4- and 5-alkoxypent-2-enylgermanes by tin(IV) halides is stereoselective leading to effective 1,5stereocontrol in reactions with aldehydes¹ providing an alternative to the use of allylstannanes for these conversions.² Transmetallation of 5-hydroxy- and 5-methoxyhex-2-enyl(tributyl)stannanes **1** by tin(IV) bromide has been shown to be stereoselective in favour of allyltin tribromides **2**, which react with aldehydes to give (3Z)-synproducts **3** with an useful overall 1,6-stereocontrol.³ In view of the continuing interest in remote stereocontrol.⁴ and 1,6-stereocontrol in particular,⁵ we now report preliminary observations on the use of 5-substituted hex-2-enylgermanes as alternatives to allylstannanes for 1,6-stereocontrol.

Keywords: Remote stereocontrol; Allylmetal; Organogermanium; Diastereoselectivity.

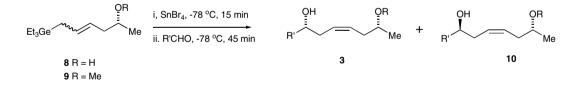

* Corresponding author. Tel.: +44 161 275 4614; fax: +44 161 275 4939; e-mail: e.j.thomas@manchester.ac.uk

0040-4039/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.11.070


The (2*E*)- and (2*Z*)-5-*tert*-butyldimethylsilyloxyhex-2enyl(triphenyl)- and -(triethyl)germanes (2*E*)- and (2*Z*)-**5** and (2*E*)- and (2*Z*)-**7** were prepared from allylic acetates (2*E*)-**4** and (2*Z*)-**4**⁶ using the cuprates prepared from lithiated triphenyl- and triethylgermane and copper(I) iodide.⁷ Desilylation gave the corresponding hydroxyalkenyl germanes (2*E*)- and (2*Z*)-**6** and (2*E*)and (2*Z*)-**8**. *O*-Methylation of the (2*E*)- and (2*Z*)-**5** hydroxyhex-2-enyl(triethyl)germanes (2*E*)- and (2*Z*)-**8** using sodium hydride and methyl iodide gave the corresponding methoxyhex-2-enylgermanes (2*E*)- and (2*Z*)-**9**.

During the studies of 1,6-stereocontrol using allylstannanes, better 1,6-stereoselectivity had been obtained using tin(IV) bromide rather than tin(IV) chloride to transmetallate 5-hydroxyhex-2-enyl(tributyl)stannane 1 (R = H).³ However, tin(IV) bromide had been found to be unreactive towards 5-benzyloxypent-2-enyl(triphenyl)germanes under the usual reaction conditions at -78 °C for 1,5-stereocontrol, although successful transmetallation had been achieved with tin(IV) bromide for the analogous (triethyl)germanium compounds.¹

In the event, unreliable results were obtained when tin(IV) chloride was used to transmetallate 5-hydroxyhex-2-enyl(triphenyl)- and -(triethyl)germanes (2*E*)and (2*Z*)-**6** and (2*E*)- and (2*Z*)-**8**, reactions with benzaldehyde giving rise to complex mixtures of products consisting mainly of branched homoallylic alcohols formed by the reaction of benzaldehyde at the 3-position of the allylgermane. As with the 5-benzyloxypent-2enyl(triphenyl)germanes, no reaction was observed when attempts were made to transmetallate (2*E*)-5hydroxyhex-2-enyl(triphenyl)germane (2*E*)-**6** under the usual reaction conditions using tin(IV) bromide.


However, more promising results were obtained with triethylgermanes (2*E*)- and (2*Z*)-**8**. Allowing 15 min for transmetallation of (2*E*)-hex-2-enyl(triethyl)germane (2*E*)-**8** using tin(IV) bromide, the reaction with benzaldehyde was stereoselective in favour of (3*Z*)-1,6-*syn*-hept-3ene-1,6-diol **3a**, 1,6-*syn*-**3a**:1,6-*anti*-**10a** = 89:11. With the (2*Z*)-hex-2-enyl(triethyl)germane (2*Z*)-**8**, a slightly better stereoselectivity in favour of the (3*Z*)-1,6-*syn*product was observed, 1,6-*syn*-**3a**:1,6-*anti*-**10a** = 94:6.⁸

1,6- syn-3a:1,6-anti-10a = 89:11 from (2E)-8 and 94:6 from (2Z)-8

Similar stereoselectivities were observed for tin(IV) bromide promoted reactions of hex-2-enyl(triethyl)germanes (2*E*)- and (2*Z*)-**8** with several aromatic and aliphatic aldehydes, see Table 1. Useful 1,6-stereocontrol, typically \geq 91:9 in favour of (3*Z*)-1,6-syn-stereoisomer **3** was obtained in all cases.⁹ Analogous results were obtained using (2*E*)- and (2*Z*)-5-methoxyhex-2-enyl(triethyl)germanes (2*E*)- and (2*Z*)-**9**, see Table 1, entries 9– 12.⁹ In fact, tin(IV) chloride was also effective for transmetallation of (2*E*)- and (2*Z*)-5-methoxyhex-2-enyl(triethyl)germanes, but variable stereoselectivities were observed in reactions with benzaldehyde, in some cases in favour of 1,6-anti-product **10g**, so the use of tin(IV) bromide is preferred for 1,6-syn-stereocontrol using allylgermanes, as had been observed for allylstannanes.

From Table 1, it can be seen that useful stereoselectivities in favour of (3Z)-1,6-syn-products 3 were obtained in all cases. As observed for the reactions of allgermanes proceeding with 1,5-stereocontrol, slightly better stereo-

Table 1.	1,6-Stereocontrol	using 5-hydroxy- and	-5-methoxyhex-2-enyl(triethyl)germanes
----------	-------------------	----------------------	--

Entry	Germane	R	Aldehyde ^a R'	Products ^b	Isolated yield (%)	Ratio 1,6-syn:1,6-anti
1	(2E) -8	Н	Ph	3 a, 10a	63	89:11
2	(2 <i>E</i>)- 8	Н	(CH ₃) ₂ CH	3b, 10b	51	90:10
3	(2Z) -8	Н	Ph	3a , 10a	$80(80)^{c}$	94:6
4	(2Z)- 8	Н	$(CH_3)_2CH$	3b, 10b	82	93:7
5	(2Z)- 8	Н	$CH_3(CH_2)_2$	3c, 10c	75	93:7
6	(2Z)- 8	Н	$4-ClC_6H_4$	3d, 10d	81	92:8
7	(2Z)- 8	Н	3-ClC ₆ H ₄	3e, 10e	83	93:7
8	(2Z)- 8	Н	$4-NO_2C_6H_4$	3f, 10f	81	91:9
9	(2 <i>E</i>)- 9	Me	Ph	3g, 10g	83	86:4
10	(2Z)- 9	Me	Ph	3g, 10g	94	94:6
11	(2 <i>E</i>)-9	Me	$4-ClC_6H_4$	3h, 10h	86	95:5
12	(2 <i>E</i>)-9	Me	$CH_3(CH_2)_2$	3i , 10i	61	90:10

^a Three equivalents of the aldehydes were used.

^b The products were identified by comparison with authentic samples (see Refs. 6 and 7).

^c One equivalent of aldehyde in this case.

selectivities were obtained using (2Z)-hexenylgermanes (2Z)-8 and (2Z)-9 than for the analogous (2E)-hexenylgermanes, perhaps due to more stereoselective transmetallation for the (2Z)-isomers. Notwithstanding this detail, it would appear that 5-substituted hex-2-enyl(triethyl)germanes can be used for 1,6-stereocontrol in tin(IV) bromide promoted reactions with aldehydes so alleviating the need for allylstannanes.

Acknowledgement

We thank the EPSRC for a studentship (to A.W.).

References and notes

- 1. Castreno, P.; Thomas, E. J. Tetrahedron Lett. 2007, 48, doi:10.1016/j.tetlet.2006.11.065.
- Thomas, E. J. Chem. Commun. 1997, 411; Carey, J. S.; Thomas, E. J. Synlett 1992, 585.

- 3. Carey, J. S.; Thomas, E. J. Tetrahedron Lett. 1993, 34, 3935.
- 4. Mikami, K.; Shimizu, M.; Zhang, H.-C.; Maryanoff, B. E. *Tetrahedron* 2001, *57*, 2917.
- 5. Miao, W.; Lu, W.; Chan, T. H. J. Am. Chem. Soc. 2003, 125, 2412.
- 6. Acetates **4** and **10** were prepared from the corresponding alcohols (see Ref. 3). Details will be provided in a full paper.
- Yamaguchi, J.; Tamada, Y.; Takeda, T. Bull. Chem. Soc. Jpn. 1993, 66, 607.
- 8. 1,6-*syn* and 1,6-*anti*-diols **3a** and **10a** were identified by comparison with samples prepared earlier (see Ref. 3). The ratio **3a:10a** was best estimated by integration of the benzylic C–H peaks in ¹H NMR spectra: $\delta_{\rm H}$ 4.68 (1H, dd, J 5, 11 Hz) for **3a** and 4.75 (1H, t, J 5) for **10a**.
- 9. Diols 3 and 10 were identified by comparison with samples prepared using the hexenylstannane 1. For the products derived from aromatic aldehydes, the *syn:anti* ratios were estimated from the integration of the benzylic protons. For products 3b,c,i and 10b,c,i prepared using aliphatic aldehydes, the *syn:anti* ratios were estimated from ¹³C spectra.